Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Int J Pharm X ; 5: 100174, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2258117

ABSTRACT

The most prevalent conditions among ocular surgery and COVID-19 patients are fungal eye infections, which may cause inflammation and dry eye, and may cause ocular morbidity. Amphotericin-B eye drops are commonly used in the treatment of ocular fungal infections. Lactoferrin is an iron-binding glycoprotein with broad-spectrum antimicrobial activity and is used for the treatment of dry eye, conjunctivitis, and ocular inflammation. However, poor aqueous stability and excessive nasolacrimal duct draining impede these agens' efficiency. The aim of this study was to examine the effect of Amphotericin-B, as an antifungal against Candida albicans, Fusarium, and Aspergillus flavus, and Lactoferrin, as an anti-inflammatory and anti-dry eye, when co-loaded in triblock polymers PLGA-PEG-PEI nanoparticles embedded in P188-P407 ophthalmic thermosensitive gel. The nanoparticles were prepared by a double emulsion solvent evaporation method. The optimized formula showed particle size (177.0 ± 0.3 nm), poly-dispersity index (0.011 ± 0.01), zeta-potential (31.9 ± 0.3 mV), and entrapment% (90.9 ± 0.5) with improved ex-vivo pharmacokinetic parameters and ex-vivo trans-corneal penetrability, compared with drug solution. Confocal laser scanning revealed valuable penetration of fluoro-labeled nanoparticles. Irritation tests (Draize Test), Atomic force microscopy, cell culture and animal tests including histopathological analysis revealed superiority of the nanoparticles in reducing signs of inflammation and eradication of fungal infection in rabbits, without causing any damage to rabbit eyeballs. The nanoparticles exhibited favorable pharmacodynamic features with sustained release profile, and is neither cytotoxic nor irritating in-vitro or in-vivo. The developed formulation might provide a new and safe nanotechnology for treating eye problems, like inflammation and fungal infections.

2.
Front Public Health ; 10: 1030249, 2022.
Article in English | MEDLINE | ID: covidwho-2099281

ABSTRACT

SARS-CoV-2 can be shed in feces and can enter sewage systems. In order to implement effective control measures and identify new channels of transmission, it is essential to identify the presence of infectious virus particles in feces and sewage. In this study, we attempt to utilize Molecular techniques, cell cultures and animal models to find out the infectivity of SARS-CoV-2 in the feces of COVID-19 patients. Our findings exclude the presence of infectious virus particles, suggesting that fecal-oral transmission may not be the main mode of transmission. Larger-scale initiatives are nevertheless required, particularly considering the emergence of new viral strains.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Sewage , RNA, Viral , Feces
3.
Cardiology in the Young ; 32(Supplement 2):S268, 2022.
Article in English | EMBASE | ID: covidwho-2062093

ABSTRACT

Background and Aim: Kawasaki-like (multisystem inflammatory) syndrome associated with SARS-CoV-2 infection is characterized by acute severe systemic vasculitis, often with multi-organ dys-function and cardiac involvement. Although most patients recover, long-term outcomes are poorly studied [Gema de Lama Caro-Paton et al., 2021;Guimaraes D. et et al., 2021;Sharma C. et al., 2021]. Method(s): We analyzed the results of laboratory, clinical, radiologi-cal, ECG and EchoCG data in the dynamic observation of 15 patients (M 9, 1.5-16 yo, m = 7) in 3 months after the suffered MIS-C. Result(s): At the disease onset high refractory fever was observed in all cases, symptoms of Kawasaki disease in 12 (80%) of them, shock with multi-organ dysfunction-in 8 (53.3%), including symptoms of acute heart failure-in 5 (33%), concomitant in two cases with severe left ventricular dilatation with low LV EF. Myocardial damage was seen in 11 patients (73%), pericarditis in 12 (80%), coronary dilatation in two (13%);troponin level increased in 5 (33%), CK-MB-in 5 (33%), BNP-in 3 (25%). After 3 months, there were no signs of myocardial dysfunction and/or cardiomegaly in any patient, troponin and BNP levels normalized in all patients, a moderate increase of CK-MB was seen in 8 (53%), and coronary dilatation persisted in one patient. Arrhythmias were documented at onset in 9 (60%) patients, 3 (20%) after 3 months (p = 0.028). Conclusion(s): preliminary results of follow-up of children after MIS-C demonstrate favorable course in the majority of patients by clinical, laboratory, ECG and echocardiographic data. Further observations are needed to determine the long-term prognosis.

4.
Vaccines (Basel) ; 10(8)2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-2024370

ABSTRACT

Dense bodies (DB) are complex, noninfectious particles produced during CMVinfection containing envelope and tegument proteins that may be ideal candidates as vaccines. Although DB were previously described in fibroblasts, no evidence of DB formation has been shown after propagating CMV in epithelial cells. In the present study, both fibroblast MRC-5 and epithelial ARPE-19 cells were used to study DB production during CMV infection. We demonstrate the formation of epithelial cell-derived DB, mostly located as cytoplasmic inclusions in the perinuclear area of the infected cell. DB were gradient-purified, and the nature of the viral particles was confirmed using CMV-specific immunelabeling. Epithelial cell-derived DB had higher density and more homogeneous size (200-300 nm) compared to fibroblast-derived DB (100-600 nm).In agreement with previous results characterizing DB from CMV-infected fibroblasts, the pp65 tegument protein was predominant in the epithelial cell-derived DB. Our results also suggest that epithelial cells had more CMV capsids in the cytoplasm and had spherical bodies compatible with nucleus condensation (pyknosis) in cells undergoing apoptosis that were not detected in MRC-5 infected cells at the tested time post-infection. Our results demonstrate the formation of DB in CMV-infected ARPE-19 epithelial cells that may be suitable candidate to develop a multiprotein vaccine with antigenic properties similar to that of the virions while not including the viral genome.

5.
Int J Mol Sci ; 23(17)2022 Aug 27.
Article in English | MEDLINE | ID: covidwho-2006041

ABSTRACT

SARS-CoV-2 replicates in host cell cytoplasm. People with cystic fibrosis, considered at risk of developing severe symptoms of COVID-19, instead, tend to show mild symptoms. We, thus, analyzed at the ultrastructural level the morphological effects of SARS-CoV-2 infection on wild-type (WT) and F508del (ΔF) CFTR-expressing CFBE41o- cells at early and late time points post infection. We also investigated ACE2 expression through immune-electron microscopy. At early times of infection, WT cells exhibited double-membrane vesicles, representing typical replicative structures, with granular and vesicular content, while at late time points, they contained vesicles with viral particles. ∆F cells exhibited double-membrane vesicles with an irregular shape and degenerative changes and at late time of infection, showed vesicles containing viruses lacking a regular structure and a well-organized distribution. ACE2 was expressed at the plasma membrane and present in the cytoplasm only at early times in WT, while it persisted even at late times of infection in ΔF cells. The autophagosome content also differed between the cells: in WT cells, it comprised vesicles associated with virus-containing structures, while in ΔF cells, it comprised ingested material for lysosomal digestion. Our data suggest that CFTR-modified cells infected with SARS-CoV-2 have impaired organization of normo-conformed replicative structures.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Humans , SARS-CoV-2
6.
Molecules ; 27(12)2022 Jun 17.
Article in English | MEDLINE | ID: covidwho-1964031

ABSTRACT

Aerosol transmission constitutes one of the major transmission routes of the SARS-CoV-2 pathogen. Due to the pathogen's properties, research on its airborne transmission has some limitations. This paper focuses on silica nanoparticles (SiO2) of 40 and 200 nm sizes as the physicochemical markers of a single SARS-CoV-2 particle enabling experiments on the transmission of bioaerosols in public spaces. Mixtures of a determined silica concentration were sprayed on as an aerosol, whose particles, sedimented on dedicated matrices, were examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Since it was not possible to quantitatively identify the markers based on the obtained images, the filters exposed with the AirSampler aspirator were analyzed based on inductively coupled plasma optical emission spectroscopy (ICP-OES). The ICP-OES method enabled us to determine the concentration of silica after extracting the marker from the filter, and consequently to estimate the number of markers. The developed procedure opens up the possibility of the quantitative estimation of the spread of the coronavirus, for example in studies on the aerosol transmission of the pathogen in an open environment where biological markers-surrogates included-cannot be used.


Subject(s)
COVID-19 , Nanoparticles , Aerosols/chemistry , Humans , Nanoparticles/chemistry , SARS-CoV-2 , Silicon Dioxide/chemistry
7.
Expert Rev Clin Immunol ; 18(9): 961-981, 2022 09.
Article in English | MEDLINE | ID: covidwho-1960664

ABSTRACT

INTRODUCTION: Aging causes several changes in the immune system, although immune aging is strongly influenced by individual immunological history, as well as genetic and environmental factors leading to inter-individual variability. AREAS COVERED: We focused on the biological and clinical meaning of immunosenescence. SARS-CoV-2 and Yellow Fever vaccine have demonstrated the clinical relevance of immunosenescence, while inconsistent results, obtained from longitudinal studies aimed at looking for immune risk phenotypes, have revealed that immunosenescence is highly context-dependent. Large projects allowed the delineation of the drivers of immune system variance, including genetic and environmental factors, sex, smoking, and co-habitation. Therefore, it is difficult to identify the interventions that can be envisaged to maintain or improve immune function in older people. That suggests that drug treatment of immunosenescence should require personalized intervention. Regarding this, we discussed the role of changes in lifestyle as a potential therapeutic approach. EXPERT OPINION: Our review points out that age is only part of the problem of immunosenescence. Everyone ages differently because is unique in genetics and experience of life and this applies even more to the immune system (immunobiography). Finally, the review shows how appreciable results in the modification of immunosenescence biomarkers can be achieved with lifestyle modification.


Subject(s)
COVID-19 , Immunosenescence , Aging , COVID-19/therapy , Humans , Immune System , SARS-CoV-2
8.
Journal of Molecular Liquids ; : 119196, 2022.
Article in English | ScienceDirect | ID: covidwho-1799778

ABSTRACT

Gallic acid metal complexes were prepared and characterised using elemental analysis, infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, electronic spectroscopy, magnetic susceptibility, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The non-electrolytic nature of the gallic acid complexes was confirmed on the basis of their molar conductance values. Conductometric titrations for Cu+2 with gallic acid confirmed the formation of a binary Cu(II) gallic acid complex. Spectral data showed that gallic acid acted as a bidentate ligand with different metal ions through meta- and para-OH phenolic groups. The complexes had different geometries, including octahedral and square planar. The thermal properties of the complexes were explored using thermogravimetric and differential thermogravimetric techniques. The surface morphology of the gallic acid complexes was observed via scanning electron microscopy. Results showed that small particles can form agglomerates with different shapes. Transmission electron microscopy revealed that the gallic acid complexes have spherical black spots with particle sizes ranging from 4.90 nm to 93.87 nm. X-ray diffraction analysis showed that the crystallinity of gallic acid was not similar to its metal complexes, confirming that the complexes formed had well-defined crystalline structure. The antioxidant activities of gallic acid and its metal complexes were assessed. Results showed that the gallic acid complexes with Cu, Zn, Cr or Se showed considerable antioxidant activities. Further studies could evaluate the potency of these complexes to elevate the antioxidant defence system and enhance body functions against degenerative diseases, such as Alzheimer disease, and viral diseases, such as COVID-19.

9.
Atmos Pollut Res ; 13(5): 101419, 2022 May.
Article in English | MEDLINE | ID: covidwho-1797181

ABSTRACT

Atmospheric pollution studies have linked diminished human activity during the COVID-19 pandemic to improve air quality. This study was conducted during January to March (2019-2021) in 332 cities in China to examine the association between population migration and air quality, and examined the role of three city attributes (pollution level, city scale, and lockdown status) in this effect. This study assessed six air pollutants, namely CO, NO2, O3, PM10, PM2.5, and SO2, and measured meteorological data, with-in city migration (WCM) index, and inter-city migration (ICM) index. A linear mixed-effects model with an autoregressive distributed lag model was fitted to estimate the effect of the percent change in migration on air pollution, adjusting for potential confounding factors. In summary, lower migration was associated with decreased air pollution (other than O3). Pollution change in susceptibility is more likely to occur in NO2 decrease and O3 increase, but unsusceptibility is more likely to occur in CO and SO2, to city attributes from low migration. Cities that are less air polluted and population-dense may benefit more from decreasing PM10 and PM2.5. The associations between population migration and air pollution were stronger in cities with stringent traffic restrictions than in cities with no lockdowns. Based on city attributes, an insignificant difference was observed between the effects of ICM and WCM on air pollution. Findings from this study may gain knowledge about the potential interaction between migration and city attributes, which may help decision-makers adopt air-quality policies with city-specific targets and paths to pursue similar air quality improvements for public health but at a much lower economic cost than lockdowns.

10.
Saudi J Biol Sci ; 29(5): 3167-3176, 2022 May.
Article in English | MEDLINE | ID: covidwho-1701232

ABSTRACT

The acquisition of multi-drug resistance (MDR) genes by pathogenic bacterial bugs and their dispersal to different food webs has become a silent pandemic. The multiplied use of different antibacterial therapeutics during COVID-19 pandemic has accelerated the process among emerging pathogens. Wild migratory birds play an important role in the spread of MDR pathogens and MDR gene flow due to the consumption of contaminated food and water. Escherichia fergusonii is an emerging pathogen of family Enterobacteriaceae and commonly causes disease in human and animals. The present study focused on the isolation of E. fergusonii from blood, saliva, and intestine of selected migratory birds of the Hazara Division. The sensitivity of isolated strains was assessed against ten different antibiotics. The isolation frequency of E. fergusonii was 69%. In blood samples, a high rate of resistance was observed against ceftriaxone (80%) followed by ampicillin (76%) whereas, in oral and intestinal samples, ceftriaxone resistant strains were 56% and 57% while ampicillin resistance was 49% and 52% respectively. The overall ceftriaxone and ampicillin-resistant cases in all three sample sources were 71% and 65% respectively. In comparison to oral and intestinal samples, high numbers of ceftriaxone-resistant strains were isolated from the blood of mallard while ampicillin-resistant strains were observed in blood samples of cattle egrets. 16S rRNA-based confirmed strains of E. fergusonii were processed for detection of CTX-M and TEM-1 gene through Polymerase chain reaction (PCR) after DNA extraction. Hundred percent ceftriaxone resistant isolates possessed CTX-M and all ampicillin-resistant strains harbored TEM-1 genes. Amplified products were sequenced by using the Sanger sequencing method and the resulted sequences were checked for similarity in the nucleotide Database through the BLAST program. TEM-1 gene showed 99% and the CTX-M gene showed 98% similar sequences in the Database. The 16S rRNA sequence and nucleotide sequences for TEM-1 and CTX-M genes were submitted to Gene Bank with accession numbers LC521304, LC521306, LC521307 respectively. We posit to combat MDR gene flow among the bacterial pathogens across different geographical locations, regular surveillance of new zoonotic pathogens must be conducted.

11.
Medicina (Kaunas) ; 58(2)2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1649122

ABSTRACT

Background and Objectives: Ankylosing spondylitis (AS) is a condition that affects 0.1% to 0.5% of the adult population. The aim of this case report was to investigate the possible effects of the drugs taken for treatment of AS as well as mRNA vaccination for COVID-19 on semen quality by performing a highly detailed analysis. Materials and Methods: Sperm characteristics were examined by light microscopy, DNA fragmentation (DFI) was analysed by flow cytometry and morphology was evaluated by transmission electron microscopy (TEM). Results: Semen analysis under therapy with (1) celecoxib and sulphasalazine showed: concentration 47 million/mL, 53% progressive motility, 7% normal morphology and 9.6% DFI, (2) Golimumab and before mRNA Vaccination showed: concentration 108 million/mL, 82% progressive motility, 1% normal morphology and 7.6% DFI, and (3) Golimumab and after 3 doses of mRNA Vaccination showed: concentration 142 million/mL, 85% progressive motility, 1% normal morphology and 6.8% DFI. TEM revealed head, neck and tail abnormalities, as well as the presence of cells with incomplete spermiogenesis white cells and phagocytes in the sample under therapy with celecoxib and sulphasalazine. Golimumab treatment lead to an increased incidence of elongated heads but in general reduced inflammation as no white cells were evident in TEM. Conclusion: The anti-inflamatory drugs celecoxib and sulphasalazine had no adverse effect on sperm quality as all parameters were within normal limits and the patient achieved under that treatment 2 pregnancies following natural conception that lead to the birth of a healthy boy and girl respectively. Anti-TNFa treatment with Golimumab exerted a negative effect on morphology but not on concentration, motility and DFI. After 3 doses of mRNA Vaccination, sperm concentration increased while motility, morphology and DFI remained similar to the values before vaccination suggesting no negative effect of the mRNA vaccine for COVID-19 on sperm quality.


Subject(s)
COVID-19 , Infertility, Male , Spondylitis, Ankylosing , COVID-19 Vaccines , Female , Humans , Infertility, Male/genetics , Male , Pregnancy , RNA, Messenger , SARS-CoV-2 , Semen , Semen Analysis , Spondylitis, Ankylosing/drug therapy , Vaccination , Vaccines, Synthetic , mRNA Vaccines
12.
International Journal of Computer Applications in Technology ; 66(3-4):350-361, 2021.
Article in English | ProQuest Central | ID: covidwho-1643308

ABSTRACT

Virus is a type of microorganism which provides adverse effect on the human society. Viruses replicate within the human cells quickly. Currently, the effects of very dangerous infectious viruses are a major issue throughout the globe. Coronavirus (CV) is a very dangerous infectious virus which has adverse effects for the entire world. The Coronavirus Disease 2019 (COVID-19) infected cases are increasing day by day in a rapid manner. So, it is very important to detect and classify this type of virus at the initial stage so that preventive measures can be taken as early as possible. In this work, a Machine Learning (ML) based approach is focused for the type classification of Transmission Electron Microscopy (TEM) CV images (CVIs) such as alpha CV (ACV), beta CV (BCV) and gamma CV (GCV). The ML-based approach mainly focuses on several classification techniques such as Support Vector Machine (SVM), Random Forest (RF), AdaBoost (AB) and Decision Tree (DT) techniques for the processing of TEM CVIs. The performance of these techniques is analysed using the performance metrics such as Classification Accuracy (CA), Area Under receiver operating characteristic Curve (AUC), F1, Precision and Recall. The simulation of this work is carried out using Orange-3.26.0.

13.
Polymers (Basel) ; 14(2)2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1637132

ABSTRACT

In this work, the strains Bacillus megaterium RAZ 3, Azotobacter chrocococcum Az 3, Bacillus araybhattay RA 5 were used as an effective producer of poly-3-hydroxybutyrate P(3HB). The purpose of the study was to isolate and obtain an effective producer of P(3HB) isolated from regional chestnut soils of northern Kazakhstan. This study demonstrates the possibility of combining the protective system of cells to physical stress as a way to optimize the synthesis of PHA by strains. Molecular identification of strains and amplification of the phbC gene, transmission electron microscope (TEM), extracted and dried PHB were subjected to Fourier infrared transmission spectroscopy (FTIR). The melting point of the isolated P(3HB) was determined. The optimal concentration of bean broth for the synthesis of P(3HB) for the modified type of Bacillus megaterium RAZ 3 was 20 g/L, at which the dry weight of cells was 25.7 g/L-1 and P(3HB) yield of 13.83 g/L-1, while the percentage yield of P(3HB) was 53.75%. The FTIR spectra of the extracted polymer showed noticeable peaks at long wavelengths. Based on a proof of concept, this study demonstrates encouraging results.

14.
Pharmaceutics ; 13(12)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1554858

ABSTRACT

Emerging and re-emerging viruses represent a serious threat to human health at a global level. In particular, enveloped viruses are one of the main causes of viral outbreaks, as recently demonstrated by SARS-CoV-2. An effective strategy to counteract these viruses could be to target the envelope by using surface-active compounds. Rhamnolipids (RLs) are microbial biosurfactants displaying a wide range of bioactivities, such as antibacterial, antifungal and antibiofilm, among others. Being of microbial origin, they are environmentally-friendly, biodegradable, and less toxic than synthetic surfactants. In this work, we explored the antiviral activity of the rhamnolipids mixture (M15RL) produced by the Antarctic bacteria Pseudomonas gessardii M15 against viruses belonging to Coronaviridae and Herpesviridae families. In addition, we investigated the rhamnolipids' mode of action and the possibility of inactivating viruses on treated surfaces. Our results show complete inactivation of HSV-1 and HSV-2 by M15RLs at 6 µg/mL, and of HCoV-229E and SARS-CoV-2 at 25 and 50 µg/mL, respectively. Concerning activity against HCoV-OC43, 80% inhibition of cytopathic effect was recorded, while no activity against naked Poliovirus Type 1 (PV-1) was detectable, suggesting that the antiviral action is mainly directed towards the envelope. In conclusion, we report a significant activity of M15RL against enveloped viruses and demonstrated for the first time the antiviral effect of rhamnolipids against SARS-CoV-2.

15.
Acta Pharm Sin B ; 12(3): 1523-1533, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1408245

ABSTRACT

The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development.

16.
Pharmaceutics ; 13(7)2021 Jul 07.
Article in English | MEDLINE | ID: covidwho-1302438

ABSTRACT

Moving towards a real mass vaccination in the context of COVID-19, healthcare professionals are required to face some criticisms due to limited data on the stability of a mRNA-based vaccine (Pfizer-BioNTech COVID-19 Vaccine in the US or Comirnaty in EU) as a dose in a 1 mL-syringe. The stability of the lipid nanoparticles and the encapsulated mRNA was evaluated in a "real-life" scenario. Specifically, we investigated the effects of different storing materials (e.g., syringes vs. glass vials), as well as of temperature and mechanical stress on nucleic acid integrity, number, and particle size distribution of lipid nanoparticles. After 5 h in the syringe, lipid nanoparticles maintained the regular round shape, and the hydrodynamic diameter ranged between 80 and 100 nm with a relatively narrow polydispersity (<0.2). Samples were stable independently of syringe materials and storage conditions. Only strong mechanical stress (e.g., shaking) caused massive aggregation of lipid nanoparticles and mRNA degradation. These proof-of-concept experiments support the hypothesis that vaccine doses can be safely prepared in a dedicated area using an aseptic technique and transferred without affecting their stability.

17.
Sens Actuators B Chem ; 345: 130411, 2021 Oct 15.
Article in English | MEDLINE | ID: covidwho-1294241

ABSTRACT

The outbreak of corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a global pandemic. The high infectivity of SARS-CoV-2 highlights the need for sensitive, rapid and on-site diagnostic assays of SARS-CoV-2 with high-throughput testing capability for large-scale population screening. The current detection methods in clinical application need to operate in centralized labs. Though some on-site detection methods have been developed, few tests could be performed for high-throughput analysis. We here developed a gold nanoparticle-based visual assay that combines with CRISPR/Cas12a-assisted RT-LAMP, which is called Cas12a-assisted RT-LAMP/AuNP (CLAP) assay for rapid and sensitive detection of SARS-CoV-2. In optimal condition, we could detect down to 4 copies/µL of SARS-CoV-2 RNA in 40 min. by naked eye. The sequence-specific recognition character of CRISPR/Cas12a enables CLAP a superior specificity. More importantly, the CLAP is easy for operation that can be extended to high-throughput test by using a common microplate reader. The CLAP assay holds a great potential to be applied in airports, railway stations, or low-resource settings for screening of suspected people. To the best of our knowledge, this is the first AuNP-based colorimetric assay coupled with Cas12 and RT-LAMP for on-site diagnosis of COVID-19. We expect CLAP assay will improve the current COVID-19 screening efforts, and make contribution for control and mitigation of the pandemic.

18.
Curr Opin Colloid Interface Sci ; 55: 101479, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1267633

ABSTRACT

We provide here a general view on the interactions of surfactants with viruses, with a particular emphasis on how such interactions can be controlled and employed for inhibiting the infectivity of enveloped viruses, including coronaviruses. The aim is to provide to interested scientists from different fields, including chemistry, physics, biochemistry, and medicine, an overview of the basic properties of surfactants and (corona)viruses, which are relevant to understanding the interactions between the two. Various types of interactions between surfactant and virus are important, and they act on different components of a virus such as the lipid envelope, membrane (envelope) proteins and nucleocapsid proteins. Accordingly, this cannot be a detailed account of all relevant aspects but instead a summary that bridges between the different disciplines. We describe concepts and cover a selection of the relevant literature as an incentive for diving deeper into the relevant material. Our focus is on more recent developments around the COVID-19 pandemic caused by SARS-CoV-2, applications of surfactants against the virus, and on the potential future use of surfactants for pandemic relief. We also cover the most important aspects of the historical development of using surfactants in combatting virus infections. We conclude that surfactants are already playing very important roles in various directions of defence against viruses, either directly, as in disinfection, or as carrier components of drug delivery systems for prophylaxis or treatment. By designing tailor-made surfactants, and consequently, advanced formulations, one can expect more and more effective use of surfactants, either directly as antiviral compounds or as part of more complex formulations.

19.
J Extracell Vesicles ; 10(8): e12110, 2021 06.
Article in English | MEDLINE | ID: covidwho-1258076

ABSTRACT

Circulating nucleic acids, encapsulated within small extracellular vesicles (EVs), provide a remote cellular snapshot of biomarkers derived from diseased tissues, however selective isolation is critical. Current laboratory-based purification techniques rely on the physical properties of small-EVs rather than their inherited cellular fingerprints. We established a highly-selective purification assay, termed EV-CATCHER, initially designed for high-throughput analysis of low-abundance small-RNA cargos by next-generation sequencing. We demonstrated its selectivity by specifically isolating and sequencing small-RNAs from mouse small-EVs spiked into human plasma. Western blotting, nanoparticle tracking, and transmission electron microscopy were used to validate and quantify the capture and release of intact small-EVs. As proof-of-principle for sensitive detection of circulating miRNAs, we compared small-RNA sequencing data from a subset of small-EVs serum-purified with EV-CATCHER to data from whole serum, using samples from a small cohort of recently hospitalized Covid-19 patients. We identified and validated, only in small-EVs, hsa-miR-146a and hsa-miR-126-3p to be significantly downregulated with disease severity. Separately, using convalescent sera from recovered Covid-19 patients with high anti-spike IgG titers, we confirmed the neutralizing properties, against SARS-CoV-2 in vitro, of a subset of small-EVs serum-purified by EV-CATCHER, as initially observed with ultracentrifuged small-EVs. Altogether our data highlight the sensitivity and versatility of EV-CATCHER.


Subject(s)
Extracellular Vesicles/chemistry , Immunologic Techniques/methods , Animals , Bodily Secretions/chemistry , COVID-19/blood , COVID-19/physiopathology , Chlorocebus aethiops , Circulating MicroRNA , High-Throughput Nucleotide Sequencing , Humans , MCF-7 Cells , Mice , RAW 264.7 Cells , Severity of Illness Index , Vero Cells
20.
Structure ; 29(8): 834-845.e5, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1208677

ABSTRACT

Spike (S) glycoprotein of SARS-CoV2 exists chiefly in two conformations, open and closed. Most previous structural studies on S protein have been conducted at pH 8.0, but knowledge of the conformational propensities under both physiological and endosomal pH conditions is important to inform vaccine development. Our current study employed single-particle cryoelectron microscopy to visualize multiple states of open and closed conformations of S protein at physiological pH 7.4 and near-physiological pH 6.5 and pH 8.0. Propensities of open and closed conformations were found to differ with pH changes, whereby around 68% of S protein exists in open conformation at pH 7.4. Furthermore, we noticed a continuous movement in the N-terminal domain, receptor-binding domain (RBD), S2 domain, and stalk domain of S protein conformations at various pH values. Several key residues involving RBD-neutralizing epitopes are differentially exposed in each conformation. This study will assist in developing novel therapeutic measures against SARS-CoV2.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Cryoelectron Microscopy , Humans , Hydrogen-Ion Concentration , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , SARS-CoV-2/chemistry , Single Molecule Imaging
SELECTION OF CITATIONS
SEARCH DETAIL